Column Failure
of Bent Tubes

by Richard Cobb
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straight and of constant cross than under the Euler as-
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length. There are two classes
of column calculations, gen-
erally known as the “Euler”
(pronounced “oiler”) and
“].B. Johnson” equations. The ]J.B. Johnson equations apply to
short, thick columns (such as one with the dimensions of a beer
can). These members fail by yielding (plastic deformation) of
the column material, and are of no interest here. The Euler equa-
tions apply to long and slender columns, such as our downtu-
bes. The remainder of this discussion will be limited to this class
of columns. An Euler column’s buckling load is not dependent on
the strength of the material, The only material property that is im-
portant is the modulus of elasticity, which relates loads and de-
flections, This is a relative constant for a given material, inde-
pendent of the strength and varying only slightly with produc-
tion method and alloy ingredients. That is, all aluminums have
one modulus of elasticity, all steels have another (steel is almost
three times “stiffer” than aluminum).

The underlying theory of an Euler column treats failure as a
stability problem. Whereas we can bend a beam (such as a lead-
ing edge) and have some indication both of the load being ap-
plied and the nearness of failure (based on the severity of the
bend), columns offer no such visual warnings. A heavily-loaded
column appears no different than a lightly loaded one. As we
increase the load, however, we reach a point where the column
becomes unstable. Collapse is sudden and with no warning.

The following assumptions are inherent in the Euler equa-
tions: the column is perfectly straight; the load is applied at the
ends of the column and is perfectly centered; the load acts along
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ing flares are close to the
ground and at (hopefully!)
low airspeeds (and there-
fore lower loads), those cal-
culations won't be covered here.

The “yield” strength of a material (S)) is defined as the
stress applied when permanent deformation occurs. (Your bent
tube is the result of bending stresses which exceeded the yield
strength at some earlier time). While material yield strength has
no place in the calculation of buckling load of an Euler column,
it does come into the calculations when the column is bent. The
maximum stress occurs on the concave side of that part of the
bent column which is farthest away from the line drawn through
the ends of the column. When this stress exceeds the yield
strength the material in this region plastically deforms (“yields”).
This, of course, causes a larger bending moment and the column
collapses. The equation for the maximum stress (o) in a curved
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This equation is presented mainly to show the nature of the
computation. P is the load applied axially at the ends of the
column, A is the cross section area of the column, d is the maxi-
mum initial deflection (bend), ¢ (in our case) is the outer radius
of the tube, r is the radius of gyration (a property of a cross
sectional which is related to the area moment of inertia), L is the
length of the column, and E is the material modulus of elastic-
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DISCLAIMER!

The purpose of this article is NOT to encourage anyone to fly with bent downtubes
by trying to guess “how much they can get away with.” Remember: THE FAILURE
OF A COLUMN MEMBER IS SUDDEN AND CATASTROPHIC—YOU HAVE NO
WARNING OF IMPENDING FAILURE!Also: These are theoretical calculations and
should be taken as such. They were not backed up by experimental verification and

LI-_—

may not accurately predict actual buckling loads.

ity. The difficulty of this com-
putation is to find the load P
which causes the maximum
stress to equal the yield
strength (Sy) of the material.
This is not easy because P ap-
pears three times in a non-lin~
ear equation. The only way to
get the answer is to use an it-
erative “numerical solution”
technique. This is a fancy way
of saying that you use a com-
puter to guess at values of P
until the values on both sides
of the “=" sign are pretty close.

If you don’t have a solid

Wall
Thickness

0.058"
0.095"

784
1161

TABLE 1

Euler Column Buckling Loads (pounds)
(1-1/8" outside diameter aluminum tube)

Length (inches)
60

load by about 30 percent. (For
these calculations a yield
strength of 40,000 psi was
used—a “typical” value for
6061-T6.)

Finally, this information
does us no good without some
kind of idea of what in-flight
loads are. Doing some crude
calculations I came up with a
“ball park” (or should I say
“LZ"?) figure of about a 100-
pound compression load on
each downtube in normal
(single-G) flight for my Sensor.
I suspect that this would ap-

65 70 75

668 576 501
980 853 743

mechanics background you're
probably close to asleep by
now. Let’s get on to the more interesting results.

Table 1 shows the Euler buckling lpads for downtubes made
of I-1/8 inch diameter aluminum tubing with different lengths
and thicknesses. Figure 1 shows the percent of Euler strength
remaining in the tubes when there is an initial curvature. These
curves apply to any thickness tube with 1-1/8 inch outer diame-
ter, a yield strength of 40,000 psi and the same modulus of
elasticity as aluminum: 10.3 x 10¢ psi (depending on the refer-
ence text—I have seen this value range from 10.0 to nearly 11).

Note how rapidly the curve drops at first. Even a one-inch
bend in a tube can reduce strength by 20 to 30 percent! (A one-
inch bend means that some part of the tube lies an inch from
where it would be if the tube were straight.) Also, be careful
about how you interpret the graph. It would appear that a 70-
inch-long tube with a one-inch bend is stronger that a 60-inch
tube with the same bend. Remember that these are only percent-
ages of the Euler buckling load. Table 1 shows that the 70-inch
tube is much weaker to begin with than the 60-inch tube. So
even though it has a higher percentage of its unbent strength,
the bent 70-inch tube will still fail under a smaller load than the
bent 60-inch tube.

A note about material strength and bent columns: As noted
earlier, an unbent column calculation does not consider yield
strength for buckling loads while a bent column calculation does.
So how much safer is a higher-strength alloy (say 7075 versus
6061)? The answer is not all that much. For a two- to three-inch
bend, doubling the yield strength only increases the buckling
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ply to a lot of other gliders as
well.

What about downtubes with inner sleeves? Well, remember
that all of these calculations are based on the assumption of
constant cross section. Since most sleeves are shorter than the
outer tube this assumption is violated. For practical purposes,
however, we can probably get a rough estimate by using a thick-
ness equal to the two individual thicknesses added. But for this
to even come close I suspect that the inner tube should be a tight
fit and not much shorter than the outer tube.

For those who wish to pursue these calculations and have
access to an IBM PC-compatible computer, | have written a pro-
gram which carries out the calculation rapidly. It is written in
Turbo Pascal and will also handle non-tubular columns if you
know such things as the cross section moment of inertia and the
cross section area, l

The author started hang gliding in 1981 and is currently an
Advanced-rated pilot and Instructor/Observer. He recently completed
a Ph.D. in mechanical engineering at Virginia Polytechnic Institute
and State University.

The program mentioned is quvailable for the cost of the 5-1/4 inch
disk and postage ($5.00): Richard Cobb, 620 W. Foster Ave., State
College, PA 16801.—Ed.
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